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Abstract: We study electromagnetic test fields in the background of vacuum black rings

using Killing vectors as vector potentials. We consider both spacetimes with a rotating S1

and with a rotating S2 and we demonstrate, in particular, that the gyromagnetic ratio of

slightly charged black rings takes the value g = 3 (this will in fact apply to a wider class

of spacetimes). We also observe that a S2-rotating black ring immersed in an external

“aligned” magnetic field completely expels the magnetic flux in the extremal limit. Finally,

we discuss the mutual alignment of principal null directions of the Maxwell 2-form and of

the Weyl tensor, and the algebraic type of exact charged black rings. In contrast to spherical

black holes, charged rings display new distinctive features and provide us with an explicit

example of algebraically general (type G) spacetimes in higher dimensions. Appendix A

contains some global results on black rings with a rotating 2-sphere. Appendix C shows

that g = D−2 in any D ≥ 4 dimensions for test electromagnetic fields generated by a time

translation.
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1. Introduction

While the study of black holes in higher dimensions has been for a long time motivated

by supergravity and string theory, recent extra-dimension scenarios have raised further

interest in view of possible new observable phenomenology (see, e.g., [1 – 3] for reviews

and references). Important early higher dimensional solutions include extensions to any

dimension D > 4 of the Schwarzschild, Reissner-Nordström [4] and Kerr black holes [5].

However, subsequent investigations have shown that even at the classical level gravity in

higher dimensions exhibits much richer dynamics than in D = 4.

One of the most remarkable features of higher dimensions is the non-uniqueness of

the rotating spherical black holes of Myers and Perry [5]. In five dimensions, vacuum

black rings have been constructed that have a S1 × S2 event horizon and that can carry

(in a certain parameter range) the same mass and spin as the S3 holes of [5]. There

exist by now a number of different black ring solutions that are the subject of ongoing

research in general relativity and string theory (cf. [6] and references therein). In particular,

rotating black rings with electric charge have been found in the D = 5 Einstein-Maxwell-

Chern-Simons theory, e.g. the first supersymmetric ring constructed in [7] and the non-

supersymmetric solution of [8]. On the other hand, corresponding solutions of the standard

Einstein-Maxwell equations which carry both electric charge and angular momenta (and

are asymptotically flat) are not known.1

In this context, we study charged black rings in the limit of a small electric charge.

Namely, we analyze physical properties of electromagnetic fields that solve Maxwell’s equa-

tions in the background of vacuum black rings. In order to do that, we will employ the

well known fact that in a vacuum spacetime, any Killing vector field ξµ can be taken as

a vector potential that automatically satisfies the sourceless Maxwell equations (in the

Lorentz gauge) [12, 13]. This easily follows from contracting the definition of the Riemann

tensor applied to ξµ, which yields the identity ξµ;ν
;ν = −Rµ

νξν . The corresponding elec-

tromagnetic field is to be understood as a test field on the given spacetime background,

in the sense that its contribution to the energy-momentum tensor of the spacetime (which

would appear at second order) is neglected. Therefore, the solution physically makes sense

only for sufficiently weak Maxwell fields.2 This property was already used [13] to study

electromagnetic fields on the background of stationary, axisymmetric, asymptotically flat

spacetimes, including in particular the Kerr black hole. Remarkably, it was shown in [13]

(and in references therein) that in D = 4 the thus generated solutions provide the unique

(stationary, axisymmetric) perturbation which adds an electric charge to a vacuum black

hole (or puts the hole into a uniform, aligned magnetic field). Although, to our knowledge,

a similar uniqueness has not been proven in D > 4, the same Killing-technique has been

1This in fact applies also to spherical black holes, since as yet there is no Kerr-Newman solution in

D > 4. In the case of zero angular momentum, static black rings with electric charge in D = 5 were

constructed in [9] (but be aware of an incorrect expression for the Maxwell field in eq. (139) therein, see

also [10, 11]) and necessarily contain a conical singularity.
2Indeed, such test fields are equivalent to the linear limit of exact Einstein-Maxwell solutions obtained

by applying a Harrison transformation [14] along the given Killing vector, at least in D = 4.
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recently employed to analyze test fields in the D = 5 Myers-Perry spacetime [15]. In this

contribution we will generalize some of the results of [15], such as the value of gyromagnetic

ratios, to five-dimensional asymptotically flat spacetimes with three commuting Killing vec-

tors, and in particular extend them to the specific case of black rings. In addition, we shall

analyze algebraic properties of Maxwell fields in the spacetime of D = 5 black holes and

black rings, both in the limit of weak fields and within exact Einstein-Maxwell solutions

(when the latter exist, i.e. in static spacetimes).

In section 2 we review asymptotic properties of D = 5 asymptotically flat vacuum

spacetimes with three commuting Killing vectors, in particular the definition of conserved

quantities. In section 3 we study test electromagnetic fields in such backgrounds using

Killing vectors to construct the vector potential. We thus clarify the interplay between

spacetime geometry and physical properties of the Maxwell field such as electric charge,

magnetic field components and gyromagnetic ratios. Using suitable asymptotic coordinates,

in section 4 we analyze in detail the specific case of the rotating black ring of [16]. We

also briefly comment on “intrinsic” magnetic dipoles and on the non-uniqueness of charged

solutions (as opposed to the D = 4 results of [13]). Section 5 considers test fields in

the background of different black rings, which rotate “along a 2-sphere” [17, 18]. These

solutions admit an extremal limit in which an external magnetic flux is completely expelled

from the event horizon. In a broader context, in section 6 we discuss the mutual alignment

of principal null directions of the Maxwell 2-form and of the Weyl tensor in the case of

test fields in several black hole/black ring spacetimes. We also consider the more general

case of certain static exact Einstein-Maxwell solutions. We present concluding remarks

in section 7. Appendix A clarifies certain global properties of the black rings of [17,

18], whereas appendix B presents some technical details which complement section 6. In

appendix C we find the value g = D− 2 for the gyromagnetic ratio of test electromagnetic

fields generated by a time translation in any stationary asymptotically flat spacetime with

D ≥ 4 dimensions.

2. General asymptotics

Let us consider a D = 5 asymptotically flat vacuum spacetime. In addition we assume that

the metric admits three commuting Killing vector fields, namely that it is stationary and

invariant under rotations in two different planes. There exist suitable asymptotic Cartesian

coordinates in which the metric functions behave as [5] (r2 = xix
i; i, j, k = 1, . . . , 4)

gtt = −1 +
8

3π

M

r2
+ O(r−3),

gti = − 4

π

xk

r4
Jki + O(r−4), (2.1)

gij =

(

1 +
4

3π

M

r2

)

δij + O(r−3),

where M is the mass of the system, and Jki an antisymmetric 4×4 tensor which represents

the angular momentum. By a suitable rotation, we can always set the spacelike Killing
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vectors in the form x1∂2−x2∂1 and x3∂4−x4∂3, respectively, so that Jki takes the standard

form with only two independent non-vanishing components, given by the spin parameters

Jψ ≡ −J12 and Jφ ≡ −J34. Now, for our purposes it is more convenient to replace the

above Cartesian coordinates by asymptotic spherical coordinates adapted to the Killing

symmetries (cf. [19] in D = 4), namely we take

x1 = r sin θ cos ψ, x2 = r sin θ sin ψ, x3 = r cos θ cos φ, x4 = r cos θ sinφ,

(2.2)

with θ ∈ [0, π/2]. The three Killing vectors are thus simply given by

ξµ
(t) = δµ

t , ξµ
(ψ) = δµ

ψ, ξµ
(φ) = δµ

φ , (2.3)

and the asymptotic behaviour (2.1) can be rewritten as

gtt = −1 +
8

3π

M

r2
+ O(r−3),

gtψ =
4

π

sin2 θ

r2
Jψ + O(r−3), gtφ =

4

π

cos2 θ

r2
Jφ + O(r−3),

grr = 1 +
4

3π

M

r2
+ O(r−3), gθθ = r2

(

1 +
4

3π

M

r2

)

+ O(r−1),

gψψ = r2 sin2 θ

(

1 +
4

3π

M

r2

)

+ O(r−1), (2.4)

gφφ = r2 cos2 θ

(

1 +
4

3π

M

r2

)

+ O(r−1),

gtr = O(r−4), gtθ = O(r−3), grθ = O(r−2),

grψ = O(r−2) = grφ, gθψ = O(r−1) = gθφ, gψφ = O(r−1).

In particular, the flat asymptotic metric takes the form

ds2
0 = −dt2 + dr2 + r2(dθ2 + sin2 θdψ2 + cos2 θdφ2), (2.5)

and for the metric determinant one finds
√−g = r3[sin θ cos θ + O(r−2)].

Note that the mass and angular momenta defined by the expansions (2.1) and (2.4) can

equivalently be computed as Komar integrals over a 3-sphere at spatial infinity (cf. [5, 19]).

In fact, one can show that

ξt;r
(t)

=
8

3π

M

r3
+ O(r−4), ξt;r

(ψ)
=

8

π

sin2 θ

r3
Jψ + O(r−4), ξt;r

(φ)
=

8

π

cos2 θ

r3
Jφ + O(r−4).

(2.6)

It follows that

M = − 3

32π

∫

S3
∞

∗dξ(t), Jψ = − 1

16π

∫

S3
∞

∗dξ(ψ), Jφ = − 1

16π

∫

S3
∞

∗dξ(φ), (2.7)

where (from now on) ξ(t), ξ(ψ) and ξ(φ) denote the three 1-forms corresponding to the

contravariant Killing fields (2.3).
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The angular momenta can also be related to the asymptotic behaviour of the twist

potential of the time-like Killing vector ξ(t). Indeed, using the expansions (2.4) and the

orthonormal cotetrad

ω(0) =

[

−
(

−1 +
8

3π

M

r2

)

+ O(r−3)

]1/2
[

dt +

(

4
π

1
r2

−1 + 8
3π

M
r2

+ O(r−3)

)

×
(

Jψ sin2 θ dψ + Jφ cos2 θ dφ
)

+ O(r−4)dr + O(r−3)dθ

]

,

ω(1) =

[

1 +
4

3π

M

r2
+ O(r−3)

]1/2

dr,

ω(2) = r

[

1 +
4

3π

M

r2
+ O(r−3)

]1/2
[

dθ + O(r−4)dr + O(r−3)(dψ + dφ)
]

, (2.8)

ω(3) = r

[

1 +
4

3π

M

r2
+ O(r−3)

]1/2
[

sin θ dψ + O(r−4)dr + O(r−3)dφ
]

,

ω(4) = r

[

1 +
4

3π

M

r2
+ O(r−3)

]1/2
[

cos θ dφ + O(r−4)dr + O(r−3)dψ
]

,

one finds that the twist 2-form

ω = ∗(ξ(t) ∧ dξ(t)), (2.9)

satisfies

ω =
8

π

1

r4

[

ω(1) ∧ (Jφ sin θ ω(3) + Jψ cos θ ω(4)) − ω(2) ∧ (Jφ cos θ ω(3) − Jψ sin θ ω(4))
]

+ O(r−5). (2.10)

Therefore, the twist potential one-form (such that ω = dχ) behaves as

χ = − 8

π

sin θ

2r3
Jφ ω(3) − 8

π

cos θ

2r3
Jψ ω(4) + O(r−4). (2.11)

3. Test Maxwell fields

3.1 General potential: electric charge and uniform magnetic fields

In the spirit of [13], we study here properties of test electromagnetic fields in a generic

spacetime that satisfies the assumptions of section 2 (this includes the case considered in

[15]). We take a general linear combination of the three Killing vectors (2.3) as a test

vector potential, namely

Aµ = αδµ
t + βδµ

ψ + γδµ
φ , (3.1)

with α, β and γ being arbitrary constants. The covariant field strength F = dA is thus

F = αdξ(t) + βdξ(ψ) + γdξ(φ), (3.2)

in which, of course, ξ(t) = gttdt + gtψdψ + gtφdφ, etc.. In particular, using eqs. (2.4) and

(2.8) one finds the leading asymptotic terms

F = 2β
(

sin θ ω(1) + cos θ ω(2)
)

∧ω(3) +2γ
(

cos θ ω(1) − sin θ ω(2)
)

∧ω(4) +O(r−1). (3.3)
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This has the form of a uniform magnetic field F = Bψdx1 ∧ dx2 + Bφdx3 ∧ dx4 (recall

eq. (2.2)) with two non-vanishing components

Bψ = 2β, Bφ = 2γ. (3.4)

The axial Killing vectors thus generate a test Maxwell field which asymptotically ap-

proaches a uniform magnetic field, whereas the field generated by the timelike Killing

vector vanishes at infinity.

Also, from the standard definition of the electric charge

Q =
1

2π2

∫

S3
∞

∗F (3.5)

with eqs. (2.7) one immediately finds the relation

Q = −α
16

3π
M − β

8

π
Jψ − γ

8

π
Jφ, (3.6)

for the charge Q added to the original spacetime by the vector potential (3.1). This demon-

strates that, in the presence of angular momenta, also the spacelike generators contribute

to the electric charge. Inverting eqs. (3.4) and (3.6) one can reexpress the potential (3.1)

in terms of physical quantities as

Aµ = −3π

16

Q

M
δµ
t +

1

2
Bψ

(

δµ
ψ − 3Jψ

2M
δµ
t

)

+
1

2
Bφ

(

δµ
φ − 3Jφ

2M
δµ
t

)

. (3.7)

Note that the timelike Killing vector enters the above expression even in the case Q = 0.

This can be interpreted as an inductive electric field generated by the rotation of the

spacetime, and it is in particular responsible for the effect of charge accretion by a black

hole placed in a uniform magnetic field [13, 15].

3.2 Induced magnetic dipoles and gyromagnetic ratios

Let us now concentrate on the case in which the uniform magnetic field components are

vanishing, i.e. Bψ = 0 = Bφ, so that the asymptotic term (3.3) is zero. Then the vector

potential (3.7) is parallel to the timelike Killing vector ξµ
(t). Using the expansions (2.4) it

is straightforward to determine the various covariant components Aµ to the leading order

At ≈
3π

16

Q

M
− Q

2r2
, Aψ ≈ −3

QJψ

2M

sin2 θ

2r2
, Aφ ≈ −3

QJφ

2M

cos2 θ

2r2
, (3.8)

while Ar and Aθ approach zero faster. The additive constant which appears in At is only

a removable gauge term, so that the leading term in At is the standard (five-dimensional)

Coulomb potential. On the other hand, from the leading terms in Aψ and Aφ one reads

off the two magnetic “dipole moments” (cf., e.g., the normalization of [15, 20])

µψ = 3
QJψ

2M
, µφ = 3

QJφ

2M
. (3.9)

From these, the gyromagnetic ratios

gψ = 3 = gφ (3.10)
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readily follow (note that the assumptions we have used so far do not distinguish between

the two rotating Killing vectors, which explains why gψ = gφ).

Equivalently, these can be also derived from geometrical properties of the Maxwell

field strength. When Bψ = 0 = Bψ, this is simply (see eqs. (3.2) and (3.6))

F = −3π

16

Q

M
dξ(t). (3.11)

It is now obvious that the electric part of the 3-form dual to the Maxwell field will be

proportional to the twist 2-form (2.9), i.e.

∗Fµνρξ
ρ
(t)

= ∗Fµνt = −3π

16

Q

M
ωµν . (3.12)

This implies a similar proportionality relation between the “magnetic” potential ϕ (defined

by ∗Fµνt = ϕν,µ − ϕµ,ν) and the twist potential 1-form χ

ϕ = −3π

16

Q

M
χ. (3.13)

Hence from eq. (2.11) we have

ϕ = 3
QJφ

2M

sin θ

2r3
ω(3) + 3

QJψ

2M

cos θ

2r3
ω(4) + O(r−4). (3.14)

Using the definitions of [15] one again finds eqs. (3.9).

Note that the above conclusions are rather general, since they apply to any vacuum

spacetime satisfying the assumptions of section 2, without involving the knowledge of the

full metric.3 In particular, the gyromagnetic ratio we have found agrees with the results

of [15], obtained in the specific case of the D = 5 Myers-Perry black hole. It is also

consistent with [24], which considered D ≥ 5 spherical black holes with an arbitrarily

large electric charge but with a small angular momentum (see also [25]). In the D = 5

Einstein-Maxwell-Chern-Simons theory there exist supersymmetric rotating charged black

holes [26] and black rings [7] that also have g = 3 [20, 27]. On the other hand, recent

numerical analysis in odd spacetime dimension D ≥ 5 [28] indicates that g is a function

of the conserved charges in the case of Einstein-Maxwell black holes with generic values of

angular momentum and electric charge (but in the limit of small spin/charge the conclusions

of [28] agree with the perturbative values of [15, 24], and in particular g → 3 in D = 5).

In the next sections we shall confirm our general results in the special case of rotat-

ing black rings, and we shall study more specific features of test Maxwell fields in such

backgrounds.

3In D = 4, the fact that the Kerr-Newman solution in the full Einstein-Maxwell theory has the value

g = 2 has been known for a long time [21]. A “universality” of such gyromagnetic ratio was subsequently

found for general stationary, axisymmetric, asymptotically flat spacetimes in the case of test fields derived

from the time translation Killing vector [13] (cf. appendix C for the D-dimensional case) and for the

corresponding Einstein-Maxwell exact solutions generated by a Harrison transformation [22] (this relies on

the fact that such solutions display the same asymptotics to the relevant order). Examples of solutions with

a different g are given, for instance, in [23]. See, e.g., [20] for a few references that discuss the gyromagnetic

ratio of objects of Kaluza-Klein and string theory.
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4. The S1-black ring

The first rotating vacuum black ring was obtained in [16]. In the coordinates of [29] (and

after trivial rescalings), the metric is

ds2 = −F (y)

F (x)

(

dt + C(ν, λ)L
1 + y

F (y)
dψ

)2

+
L2

(x − y)2
F (x)

[

−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)
dφ2

]

, (4.1)

where

F (ζ) =
1 + λζ

1 − λ
, G(ζ) = (1 − ζ2)

1 + νζ

1 − ν
, C(ν, λ) =

√

λ(λ − ν)(1 + λ)

(1 − ν)(1 − λ)3
. (4.2)

The parameters satisfy 0 < ν ≤ λ < 1 and L > 0. As for the coordinate range, we

take y ∈ (−∞,−1], x ∈ [−1,+1]. To avoid conical singularities at the axes x = −1 and

y = −1, the angular coordinates must have the standard periodicity

∆φ = 2π = ∆ψ. (4.3)

The ring is balanced (i.e., conical singularities are absent also at x = +1) if

λ =
2ν

1 + ν2
. (4.4)

At y → −∞ the spacetime has a inner spacelike curvature singularity, y = −1/ν is a

horizon and y = −1/λ an ergosurface, both with topology S1 × S2. The algebraic type of

the Weyl tensor of the black ring solution is Ii [30]. The spacetime (4.1) is asymptotically

flat near spatial infinity x, y → −1.

In order to study asymptotic properties, it is convenient to introduce suitable new

asymptotic coordinates (r, θ) by the substitution (meaningful, say, for r À L)

x = −1 +
2L2

r2
cos2 θ +

4L4

r4
cos2 θ(k1 cos2 θ + k2),

y = −1 − 2L2

r2
sin2 θ +

4L4

r4
sin2 θ(k1 sin2 θ + k2), (4.5)

with parameters

k1 = −−9ν + 5λν + 3 + λ

2(1 − λ)(1 − ν)
, k2 =

3λν − 6ν + 2 + λ

2(1 − λ)(1 − ν)
, (4.6)

and θ ∈ [0, π/2]. Asymptotic spacelike infinity thus corresponds to r → ∞, where the

metric (4.1) approaches the Minkowskian line element (2.5), and the metric coefficients

behave as

gtt = −1 +
2λ

1 − λ

L2

r2
+ O(r−4), gtψ = C(ν, λ) sin2 θ

2L3

r2
+ O(r−4),

– 8 –
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grr = 1 +
λ

1 − λ

L2

r2
+ O(r−4), grθ = O(r−3),

gθθ = r2

(

1 +
λ

1 − λ

L2

r2

)

+ O(r−2), (4.7)

gψψ = r2 sin2 θ

(

1 +
λ

1 − λ

L2

r2

)

+ O(r−2),

gφφ = r2 cos2 θ

(

1 +
λ

1 − λ

L2

r2

)

+ O(r−2),

the remaining ones being identically zero. By comparison with eq. (2.4), one reads off the

mass and angular momentum of the black ring

M =
3πL2

4

λ

1 − λ
, Jψ =

πL3

2
C(ν, λ). (4.8)

Obviously Jφ = 0 and the ring rotates only along the S1 parametrized by ψ.

In order to construct test fields on the black ring spacetime, we proceed as in section 3.

Taking a contravariant vector potential of the form (3.1), one now has the only non-

vanishing covariant components

At = αgtt + βgtψ , Aψ = αgtψ + βgψψ , Aφ = γgφφ, (4.9)

with the metric coefficients given in eq. (4.1).

4.1 Black ring with electric charge

The gψψ and gφφ components do not vanish near infinity, and give raise to an external

magnetic field via eq. (4.9) (cf. section 3). The latter is absent when β = 0 = γ, in which

case the Maxwell field strength has the only non-zero components

Fxt = α
λ(1 + λy)

(1 + λx)2
, Fyt = −α

λ

1 + λx
,

Fxψ = αC(ν, λ)Lλ(1 − λ)
1 + y

(1 + λx)2
, Fyψ = −αC(ν, λ)L

1 − λ

1 + λx
, (4.10)

and it vanishes asymptotically in suitable coordinates, since the expansion (4.7) determines

the following behavior of the potential for r → ∞

At = −α + α
2λ

1 − λ

L2

r2
+ O(r−4),

Aψ = αC(ν, λ) sin2 θ
2L3

r2
+ O(r−4), (4.11)

Aφ = 0.

These are a special subcase of eq. (3.8) with electric charge and dipole moment given by

Q = −4αL2 λ

1 − λ
, µψ = −4αC(ν, λ)L3. (4.12)

– 9 –
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Recalling also eq. (4.8), this explicitly shows that that the gyromagnetic ratio of the rotating

black ring of [16] with a small charge is gψ = 3, as expected from the general conclusions

of section 3. This coincides with the results of [31] for a rotating black ring in heterotic

supergravity (in the small charge limit and up to a different normalization), and of [27]

for supersymmetric black rings. However, it is worth emphasizing that (as opposed to the

corresponding situation in D = 4 [13]) we have not proven any uniqueness result for the

above solution (4.10). In other words, while eq. (4.10) certainly provides a solution (regular

in the exterior region and on the horizon, and vanishing at infinity) which adds a charge

Q to the black ring (4.1), there might exist different solutions which add the same charge

(perhaps with a different gyromagnetic ratio).4 Indeed, we shall mention explicit examples

in the next subsection. The algebraic structure of the Maxwell field (4.10) (in the static

case) will be discussed in section 6.

4.2 Black rings with dipole charge and their non-uniqueness

The method based on Killing vectors employed above clearly does not lead to a general

solution of the Maxwell equations, which would require a study beyond the scope of the

present work. We just present here a different solution with interesting physical properties,

especially in view of the discussion concluding the preceding subsection. One can easily

show that taking At = 0 = Aψ and

Aφ = c0 + c1(1 + x), (4.13)

with c0 and c1 arbitrary constants, provides a solution of the Maxwell equations on the

background (4.1) without any unphysical singularities in the field strength (e.g., at the

horizon). This describes the field of an intrinsic magnetic dipole with “local charge” [29]

q ≡ 1

4π

∫

S2

F = c1, (4.14)

where F = c1dx∧dφ is the Maxwell 2-form (locally) defined by F = dA, and S2 indicates a

2-sphere parametrized by (x, φ) at constant t, y, and ψ. In fact, such a test electromagnetic

field coincides with the weak-field limit of the solution of the full Einstein-Maxwell equations

(a dipole black ring) presented in [29]. Asymptotically, it behaves as

Aφ = c0 + c1
2L2

r2
cos2 θ + O(r−4), (4.15)

i.e. essentially as the component Aψ in eq. (4.11), which represents a magnetic dipole

induced by the rotation of the electric charge.

Thanks to the linearity of Maxwell’s equations, one can now arbitrarily superimpose

solutions of the form (4.9) (e.g., with β = 0 = γ) and (4.13). In particular, since the

constant c1 is an arbitrary (“small”) real number, one can describe an infinity of black

rings with fixed electric charge (together, of course, with mass and angular momentum)

but with an arbitrary value of the dipole (note, however, that eq. (4.10), i.e. the solution

4Similar comments apply to the charged black holes of [15].
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with to c1 = 0, is still the unique solution within such a family that adds a charge Q and

has zero dipole field in the static limit, so that this non-uniqueness does not affect the

value gψ = 3 discussed above). In the special case Q = 0 (i.e., α = 0 but c1 6= 0), this is

a “linearized” version of the continuous non-uniqueness observed in [29] for dipole black

rings with zero charge in the full Einstein-Maxwell(-dilaton) theory.

4.3 Black ring in an external magnetic field

We have above analyzed test fields corresponding to a charged (dipole) black ring with a

zero background magnetic field. Let us now just mention the complementary situation of

a neutral black ring immersed in an external “uniform” magnetic field, which arises when

Q = 0 and corresponds to the choice (cf. eqs. (3.6) and (4.8))

α = −
√

(λ − ν)(1 + λ)

λ(1 − ν)(1 − λ)
βL (4.16)

in eq. (4.9). Note that exact solutions to the full Einstein-Maxwell theory representing

(dipole) black rings in an external magnetic (Melvin) field have been obtained in [32] via

a suitable Harrison transformation (in the case of spin along ψ and A = Aφdφ).

5. The S2-black ring

Vacuum black rings with a rotating 2-sphere have been presented in [17] and [18] using

different coordinates (cf. [33] for the relating coordinate transformation). The metric of

[18] can be written as

ds2 = −H2(x, y)

H1(x, y)

(

dt − C(σ, λ)L
y(1 − x2)

H2(x, y)
dφ

)2

+
L2

(x − y)2
H1(x, y)

×
[

(y2 − 1)
F (x)

H1(x, y)
dψ2 +

1

F (y)

dy2

y2 − 1
+

1

F (x)

dx2

1 − x2
+ (1 − x2)

F (y)

H2(x, y)
dφ2

]

,(5.1)

where

H1(x, y) =
1 + λx + (σxy)2

1 − λ + σ2
, H2(x, y) =

1 + λy + (σxy)2

1 − λ + σ2
,

F (ζ) =
1 + λζ + (σζ)2

1 − λ + σ2
, C(σ, λ) =

σλ

(1 − λ + σ2)3/2
, (5.2)

with 2σ < λ < 1 + σ2, σ ∈ (0, 1).

The coordinate (x, y) range as x ∈ [−1,+1], y ∈ (−∞,−1] ∪ [1,∞) (see appendix A).

The above metric is regular at the axes x = −1 and y = −1 provided eq. (4.3) holds.

With this choice, however, there is a conical singularity at x = +1 representing a disk-

shaped membrane inside the ring. There exist an outer and an inner horizon at y± =

(−λ ±
√

λ2 − 4σ2)/(2σ2), which in the extremal limit λ = 2σ coincide at yh = −1/σ. The

spacetime has a curvature singularity at x = 0 with y = ±∞. We refer to appendix A

for further details, including the localization of ergosurfaces. In the exterior region, the
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spacetime (5.1) is asymptotically flat at x, y → −1. Using again the asymptotic coordi-

nates (4.5), but now with the parameters

k1 =
5λ − 3 + σ2

2(1 − λ + σ2)
, k2 =

2 − 3λ − 2σ2

2(1 − λ + σ2)
, (5.3)

one finds the expansion for r → ∞ of the only non vanishing metric components

gtt = −1 +
2λ

1 − λ + σ2

L2

r2
+ O(r−4), gtφ = −2C(σ, λ) cos2 θ

2L3

r2
+ O(r−4),

grr = 1 +
λ

1 − λ + σ2

L2

r2
+ O(r−4), grθ = O(r−3),

gθθ = r2

(

1 +
λ

1 − λ + σ2

L2

r2

)

+ O(r−2), (5.4)

gψψ = r2 sin2 θ

(

1 +
λ

1 − λ + σ2

L2

r2

)

+ O(r−2),

gφφ = r2 cos2 θ

(

1 +
λ

1 − λ + σ2

L2

r2

)

+ O(r−2).

Recalling eq. (2.4), the mass and angular momentum of the black ring follow

M =
3πL2

4

λ

1 − λ + σ2
, Jφ = −πL3C(σ, λ). (5.5)

Again, test fields on the above spacetime can be constructed as in sections 3 and 4.

Starting from eq. (3.1), one obviously obtains

At = αgtt + γgtφ, Aψ = βgψψ , Aφ = αgtφ + γgφφ, (5.6)

with the metric coefficients as in eq. (5.1).

5.1 Black ring with electric charge

Adding an electric charge with no external magnetic field amounts to having β = 0 = γ,

in which case the Maxwell field is explicitly given by

Fxt = αλ
1 + λy + σ2xy2(2y − x)

[(1 + λx + (σxy)2]2
, Fyt = −αλ

1 + λx + σ2x2y(2x − y)

[(1 + λx + (σxy)2]2
,

Fxφ = −α
σλL√

1 − λ + σ2

y(λ + 2x + λx2 + 2σ2xy2)

[(1 + λx + (σxy)2]2
, (5.7)

Fyφ = α
σλL√

1 − λ + σ2

(1 − x2)[1 + λx − (σxy)2]

[(1 + λx + (σxy)2]2
.

The r → ∞ fall-off is determined by eq. (5.4) as

At = −α + α
2λ

1 − λ + σ2

L2

r2
+ O(r−4),

Aψ = 0, (5.8)

Aφ = −2αC(σ, λ) cos2 θ
2L3

r2
+ O(r−4),
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corresponding to the following values of the electric charge and dipole moment

Q = −4αL2 λ

1 − λ + σ2
, µφ = 8αC(σ, λ)L3. (5.9)

Similarly as in the previous section, this demonstrates that the gyromagnetic ratio is gφ = 3

for a slightly charged black ring with a rotating 2-sphere. Note also that the asymptotic

form of Aφ is identical to that of a dipole field, cf. eq. (4.15). In the present case, however,

there is no associated local magnetic charge (essentially because Aφ is regular over each

S2).

5.2 Extremal black ring in a magnetic field: flux expulsion

The complementary situation of a black ring with Q = 0 under the influence of an external

magnetic field occurs when one takes

α =
2σL√

1 − λ + σ2
γ (5.10)

in the components (5.6). In this case, it is interesting to write down the explicit form of

the potential, i.e.

At = −γ
σL√

1 − λ + σ2

2 + λy + x2y(λ + 2σ2y)

1 + λx + (σxy)2
,

Aψ = β
L2

1 − λ + σ2

y2 − 1

(x − y)2
[1 + λx + (σx)2], (5.11)

Aφ = γ
σ2λL2

1 − λ + σ2

y(1 − x2)

1 + λy + (σxy)2
2 + λy + x2y(λ + 2σ2y)

1 + λx + (σxy)2
(5.12)

+ γ
L2

1 − λ + σ2

1 − x2

(x − y)2
1 + λx + (σxy)2

1 + λy + (σxy)2
(1 + λy + σ2y2).

From now on, we shall be concentrating on extremal black rings, defined by λ = 2σ (an

upper index “ex” will denote quantities evaluated at extremality). From the above equa-

tions, one can easily verify that in this case the Aex

t and Aex

φ components are proportional to

(1+σy). This seems to indicate that they vanish at the degenerate horizon y = yh = −1/σ.

However, the coordinates presently in use become singular precisely there. One therefore

needs new coordinates that extend through y = −1/σ, for instance the set (v, x′, y′, ψ′, χ)

defined by (cf. also, e.g., [7])

dt = dv +

[

A1σ

1 + σy
+

A2σ
2

(1 + σy)2

]

dy,

dφ = dχ +

[

B1σ

1 + σy
+

B2σ
2

(1 + σy)2

]

dy, (5.13)

x = x′, y = y′, ψ = ψ′,

with the constant parameters

A1 =
2σL

1 − σ
(B1 + σB2), A2 =

2σL

1 − σ
B2,

B1 =
σ2

(1 + σ)
√

1 − σ2
, B2 =

√
1 − σ2

σ(1 + σ)
. (5.14)
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In the new coordinate system, the vector potential takes the form Aex = Aex

v dv + Aex

y′dy′ +

Aex

ψ′dψ′ + Aex

χ dχ, with

Aex

v = Aex

t = −γ
2σL

1 − σ

1 + σx2y

1 + 2σx + (σxy)2
(1 + σy),

Aex

ψ′ = Aex

ψ = β
L2

(1 − σ)2
y2 − 1

(x − y)2
(1 + σx)2,

Aex

y′ = Aex

t

[

A1σ

1 + σy
+

A2σ
2

(1 + σy)2

]

+ Aex

φ

[

B1σ

1 + σy
+

B2σ
2

(1 + σy)2

]

=

[

−4σ2 (1 + σx2y)2

1 + 2σx + (σxy)2
+

1 − x2

(x − y)2
[1 + 2σx + (σxy)2]

]

(5.15)

× γ
σL2

(1 − σ)2
σB2 + B1(1 + σy)

1 + 2σy + (σxy)2
− γ

4σ4L2B2

(1 − σ)2
1 + σx2y

1 + 2σx + (σxy)2
,

Aex

χ = Aex

φ = γ
4σ3L2

(1 − σ)2
y(1 − x2)

1 + 2σy + (σxy)2
1 + σx2y

1 + 2σx + (σxy)2
(1 + σy)

+ γ
L2

(1 − σ)2
1 − x2

(x − y)2
1 + 2σx + (σxy)2

1 + 2σy + (σxy)2
(1 + σy)2.

The amount of magnetic flux Φ across a portion of the horizon (y′ = y = −1/σ)

bounded by a closed curve Γ is given by the line integral Φ =
∮

Γ A. It is thus obvious

from eq. (5.15) that the only contribution to Φ will come from Aex

ψ′ . In particular, for

β = 0 (i.e., Bψ = 0) the flux is completely expelled from the horizon of extremal black

rings. This is analogous to the flux expulsion (“Meissner effect”) from extremal Kerr black

holes in D = 4, observed for aligned uniform magnetic fields (through the “upper half” of

the horizon) in [34] and generalized to any stationary axisymmetric magnetic field (across

any part of the horizon) in [35] (non-aligned fields are not expelled [35]). See [36] for the

discussion of flux expulsion from extremal Reissner-Nordström black holes in D = 4, [15]

for the case of D = 5 extremal Myers-Perry black holes, and [37] for similar effects in

Kaluza-Klein and string theories.

6. Algebraic properties of test Maxwell fields

In this section we analyze algebraic properties of a test field F = dA in the case of a

potential

Aµ = αδµ
t (6.1)

parallel to the timelike Killing vector ∂t of certain static or stationary black hole spacetimes.

Study of null eigenvectors k (satisfying Fµ
νkν = λ(k)k

µ) of the test field F generated by

Killing vectors provides a link between symmetries and algebraic structure of the spacetime.

As a remarkable example of this interplay, it was shown in [38] that in four dimensions

the Kerr metric is the only asymptotically flat vacuum spacetime with a Killing vector ξ

approaching a time translation at infinity, for which the null eigenvectors of the 2-form

F = dξ coincide with the principal null directions of the Weyl tensor. In fact, since the

full solution of the Einstein-Maxwell system representing a charged rotating black hole is
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known (the Kerr-Newman solution) it can be shown that also the null eigenvectors of the

exact field strength tensor F̃ coincide with the principal null directions of the Weyl tensor.

(Note that for the Kerr-Newman metric the vector k in the Kerr-Schild form, which is

necessarily a principal null direction, does not depend on charge.)

Here we want to analyze possible alignment of principal null directions of a vacuum

spacetime with eigenvectors of a test field F in the case of five dimensional Schwarzschild-

Tangherlini and Myers-Perry black holes and of static black rings. We shall comment also

on alignment of the exact field strength tensor F̃ for the corresponding solutions of the full

Einstein-Maxwell equations, when these are known.5

In order to do that, in following calculations we will use the frame

m(0) = n, m(1) = `, m(i), i = 2 . . . 4,

with two null vectors n, `

`µ`µ = nµnµ = 0, `µnµ = 1, µ = 0 . . . 4, (6.2)

and three spacelike vectors m(i)

m(i)µm(j)
µ = δij , m(i)µ`µ = 0 = m(i)µnµ, i, j = 2 . . . 4. (6.3)

Then, we will employ the recently developed generalization of the Petrov classification of the

Weyl tensor in higher dimensions [39, 40]. For the Maxwell field, one can similarly use its de-

composition into different boost order components [41] (see also [42] for detailed information

in the four-dimensional case), i.e. Fµν = 2F0in[µm
(i)
ν] +2F01n[µ`ν]+Fijm

(i)
[µ m

(j)
ν] +2F1i`[µm

(i)
ν] ,

in order to define aligned null directions. Let us note that in all five-dimensional cases stud-

ied below F and F̃ possess two null eigendirections and are thus of the algebraically special

type (1, 1) [41] with all their non-vanishing components having boost order zero (that is,

F0i = 0 = F1i). In this sense one could also regard F and F̃ as being of type D.

6.1 Schwarzschild-Tangherlini

Let us analyze alignment of F and F̃ with the Weyl tensor in the case of five-dimensional

static vacuum and charged black holes [4].

6.1.1 The vacuum case (test field)

The five-dimensional spherically symmetric vacuum Schwarzschild-Tangherlini black hole

in hyperspherical coordinates has the form

ds2 = −f2dt2 + f−2dr2 + r2dΩ2
3, (6.4)

where

f2 = 1 − µ

r2
, (6.5)

5Note that, as a consequence of Einstein’s equations with 4πTµν = F̃ ρ
µF̃ρν −

1

4
F̃ ρσF̃ρσgµν , eigenvectors

of F̃ are also eigenvectors of the Ricci tensor.
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and dΩ2
3 is the line element of the unit 3-sphere.

The null eigenvectors and corresponding eigenvalues of the mixed test field strength

Fµ
ν are

` = ∂t − f2∂r : λ(`) =
2αµ

r3
, (6.6)

n = ∂t + f2∂r : λ(n) = −2αµ

r3
. (6.7)

In the 3-space of spacelike eigenvectors corresponding to the eigenvalue 0, we choose the

following orthonormal basis

m(2) =
1

r
∂θ, m(3) =

1

r sin θ
∂φ, m(4) =

1

r cos θ
∂ψ, (6.8)

so that `, n,m(2), m(3) and m(4) satisfy eqs. (6.2) and (6.3).

In this frame all components of the Weyl tensor with boost orders 2, 1, -1 and -2 (see

[39]) vanish. Consequently ` and n are also principal null directions (or Weyl aligned null

directions - WANDs) of the (type D [39, 43]) Weyl tensor and F is thus completely aligned

with the Weyl tensor.

6.1.2 The charged case (full Einstein-Maxwell)

A charged static five-dimensional black hole is described by the metric (6.4) with

f2 = 1 − µ

r2
+

e2

r4
, (6.9)

and by the vector potential

Ã = −
√

3

4

e

r2
dt. (6.10)

The null eigenvectors of the field strength tensor F̃ = dÃ are again given by eqs. (6.6) and

(6.7) and are aligned with the type D Weyl tensor.

6.2 Myers-Perry

The metric of a five-dimensional vacuum black hole with two rotational parameters a, b

can be written in the form [5]

ds2 = −dt2 +
ρ2r2

∆
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ2 + (r2 + b2) cos2 θdψ2 (6.11)

+
µ

ρ2
(dt + a sin2 θdφ + b cos2 θdψ)2, (6.12)

where

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, ∆ = (r2 + a2)(r2 + b2) − µr2.

The two null eigenvectors of the test field F

L± =
(r2 + a2)(r2 + b2)

∆

(

∂t −
a

r2 + a2
∂φ − b

r2 + b2
∂ψ

)

± ∂r, (6.13)
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corresponding to the eigenvalues

∓ 2αµr
(

r2 + a2 cos2 θ + b2 sin2 θ
)2 , (6.14)

coincide with the two WANDs (of this type D spacetime) identified in [44, 45].

An exact Einstein-Maxwell solution corresponding to the charged version of the Myers-

Perry metric is unknown. Nevertheless, in view of the above results it seems plausible to

expect that for such a solution F̃ will be again aligned with the Weyl tensor and that the

spacetime will be again of type D. Note, however, that the supersymmetric supergravity

black holes of [26] are of type Ii [43].

6.3 Static black rings

6.3.1 The vacuum case (test field)

The metric of a static vacuum black ring is given by eq. (4.1) with ν = λ. The Maxwell

field F , see eq. (4.10), admits two null eigenvectors ` ≡ L+, n ≡ L−

L± = ±
√

− (1 + λx) (x − y) (x + xλ y + λ + y)L

(y2 − 1) (1 + λ y) (x − y)
∂t +

x2 − 1

y2 − 1
∂x + ∂y, (6.15)

which correspond to the eigenvalues

∓
√

− (1 + λx) (x − y) (x + xλ y + λ + y) (x − y)α λ

(1 + λx)2 L
. (6.16)

We complete the frame by

m(2) =
1 + λx

1 + λy
∂x + ∂y, m(3) = ∂φ, m(4) = ∂ψ. (6.17)

Note that this frame is not normalized but this does not affect further results.

In this frame

Cµνρσm(2)µ`νm(2)ρ`σ = Cµνρσm(2)µnνm(2)ρnσ =
λL2

2

(x + xλ y + λ + y)

(y2 − 1)3 (1 + λ y)2
. (6.18)

These quantities do not vanish and thus ` and n are not aligned with the Weyl tensor

(which is of type Ii [30]). Since even the test field F does not preserve principal null

directions of the spacetime, one would a fortiori expect an analogous situation in the case

of an exact Einstein-Maxwell charged static black ring, and thus one would also intuitively

expect this spacetime to be of algebraically general type G.6 This turns out to be true (see

the next subsection).

6A similar situation arises in D = 4 when one puts a Schwarzschild black hole (of type D) into a

magnetic Melvin universe (also of type D but with “different” principal null directions), which results in

the Schwarzschild-Melvin spacetime (of algebraically general type I [46]).
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6.3.2 The charged case (full Einstein-Maxwell)

The metric of a static charged black ring is [9 – 11]

ds2 = −Λ−2 F (y)

F (x)
dt2 +

ΛL2

(x − y)2

F (x)

[

1

F (y)

dy2

y2 − 1
+

1

F (x)

dx2

1 − x2
+ (1 − x2)dφ2 + (y2 − 1)dψ2

]

, (6.19)

with F (ξ) as in eq. (4.2) and Λ and the electromagnetic potential given by (we take e2 < 1)

Λ =
1 − e2 F (y)

F (x)

1 − e2
, Ã = −

√
3 e

2Λ

F (y)

F (x)
dt. (6.20)

We want to prove that the metric (6.19) is indeed of type G, i.e. that it does not possess

WANDs. Consequently, we have to show that the necessary and sufficient conditions for

type I (see [40, 30])

Iτµσι = `ν`ρ`[τCµ]νρ[σ`ι] = 0 (6.21)

do not admit any real null solution `.

Let us denote the covariant components of ` as

`µ = (α, β, γ, δ, ε). (6.22)

The condition that ` is null leads to a second order polynomial equation in α, . . . , ε. Com-

ponents of the Weyl tensor for the metric (6.19) are very complicated and thus eqs. (6.21)

in general lead to fourth order polynomial equations with thousands of terms. Fortunately,

by choosing the right sequence of equations, one can show that eqs. (6.21) do not admit a

real null solution. Let us now outline this procedure.

Two of the equations (6.21) are particularly simple - Itxφψ implies

λ(e2 − 1)αβδε = 0 (6.23)

and Itxφψ leads to

λe2(e2 − 1)αγδε = 0. (6.24)

First note that for a non-zero `, the component `t = α must be non-zero since ` is null

and t is the timelike coordinate. As a consequence of the previous two equations either

β = γ = 0 or δε = 0. In appendix B we study in detail all possibilities compatible with

(6.23) and (6.24) and show that they do not admit a real null solution. These possibilities

are 1) β = γ = 0; 2) ε = β = 0; 3) ε = γ = 0; 4) ε = δ = 0; 5) δ = β = 0; 6) δ = γ = 0; 7)

δ = 0, the rest is non-zero; 8) ε = 0, the rest is non-zero.

Consequently, charged static black rings do not admit WANDs and, to our knowledge,

they provide the first explicitly identified known solutions of type G. 7

7In [43] it was pointed out that the supersymmetric black ring of [7] is not more special than type Ii,

and that it is possibly of type G.
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7. Conclusions

We have studied various features of five-dimensional stationary and (bi-)axisymmetric

asymptotically flat spacetimes. First, we have discussed properties of test Maxwell fields

obtained from Killing generators in vacuum backgrounds. Some of these, such as gyro-

magnetic ratios, depend only on the asymptotics and not on the details of the spacetime.

In particular, we have recovered the g = 3 result of [15] for Myers-Perry black holes and

extended it to more general solutions, including both families of vacuum black rings. Then

we have elucidated facts that are related to the specific spacetimes one considers, for exam-

ple flux expulsion from extremal black rings. Our results are natural extensions of previous

investigations in D = 4, but we have also pointed out important differences. These are

mainly related on the one hand to the non-uniqueness of perturbative charged solutions

in D = 5, and on the other hand to the mutual alignment properties of principal null

directions of the Maxwell strength and of the Weyl tensor. While spherical D = 5 black

holes behave, in this sense, like the D = 4 Kerr metric (which is in fact uniquely char-

acterized by its alignment properties [38]), black rings present a more complex structure.

As an interesting consequence, we have pointed out that exact Einstein-Maxwell solutions

describing (static) charged black rings have a Weyl tensor of the most general algebraic

type (type G). This seems to be the first explicit example of such a spacetime. As a side

result, in appendix A we have analyzed the global structure of the S2-black ring.

Although our contribution has been mainly focused on test electromagnetic fields,

some of the conclusions extend to exact solutions of theories describing gravity coupled

to antisymmetric forms, and may thus stimulate further studies. For example, one could

naturally wonder whether exact Einstein-Maxwell black rings with arbitrary electric and

dipole charge exist that generalize the solutions of [29] and that reduce to the test fields

of section 4 for small Q and q. Apart from supersymmetric black rings [7, 47, 27, 48] (in

which mass and charge(s) saturate a BPS bound and are therefore related), black ring

solutions of the Einstein-Maxwell-Chern-Simons theory exist which contain both electric

and dipole charge [8], but these are not independent parameters. Nevertheless, some of

our test field results can be recovered in the weak field limit of such solutions (since the

Chern-Simons “correction” affects Maxwell’s equations only at second order). Moreover,

the study of alignment of the test field with the Weyl tensor for the Myers-Perry metric

in five dimensions seems to indicate that an exact Einstein-Maxwell charged black hole (if

found) could be again of the type D, with the only non-vanishing components of the field

strength tensor and Ricci tensor being of boost order zero. These investigations are left

for future work.
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A. On the global structure of the S2-black ring

In this appendix we discuss some properties of the spacetime (5.1), in order to comple-

ment (and in part recover) the analysis of [18] and [17, 33] (the latter being in different

coordinates).

A.1 Metric signature

Let us first determine regions where the metric (5.1) admits Lorentzian signature.

The metric admits five real eigenvalues λ1 . . . λ5, where λ1 = gxx, λ2 = gyy, λ3 = gψψ .

Expressions for λ4 and λ5 are quite complicated, but their product λ4λ5 = gttgφφ − g2
tφ is

much simpler. One can then use the signs of (λ4λ5) and gtt to determine the signature

of the 2-metric over the subspace (t, φ), since ds2
(t,φ) = gttdt2 + 2gtφdtdφ + gφφdφ2 =

gtt(dt+gtφg−1
tt dφ)2+(λ4λ5)g

−1
tt dφ2. Now, in order to study the behaviour of the eigenvalues

λ1 . . . λ5 explicitly we analyze the functions F (y), H2(x, y), F (x) and H1(x, y) entering the

metric (5.1).

The quadratic function F (y) has the minimum for y = −λ/2σ2 < −1. The value of

F (y) at this point is (1 − λ2/4σ2)/(1 − λ + σ2) < 0. On the other hand, F (−1) = 1 > 0.

Consequently F (y) has two roots

y± =
−λ ±

√
λ2 − 4σ2

2σ2
, y− < y+ < −1, (A.1)

and it is thus strictly positive everywhere except for y ∈ [y−, y+]. As an immediate conse-

quence, in the set x ∈ (−∞,−1] ∪ [1,∞) with y ∈ (−∞, y−) ∪ (y+,∞) one finds that nec-

essarily H2(x, y) > 0, and in the set x ∈ [−1, 1] with y ∈ (y−, y+) necessarily H2(x, y) < 0.

However, the full region of the plane (x, y) with H2(x, y) > 0 is given by the semiplane

y > −1/λ and by the subset of the semiplane y < −1/λ that satisfies x2 > −(1+λy)/(σy)2.

Of course F (x) and H1(x, y) present the same behaviour as F (y) and H2(x, y) up

to interchanging x ↔ y. Namely, F (x) > 0 ⇔ x ∈ (−∞, y−) ∪ (y+,∞) (note that, in

particular, F (x) > 0 for x ∈ [−1, 1]), and H1(x, y) > 0 in the semiplane x > −1/λ and in

the region x < −1/λ with y2 > −(1+λx)/(σx)2 (consequently, H1(x, y) > 0 for x ∈ [−1, 1]

with y ∈ (−∞,−1] ∪ [1,∞)).

A.1.1 Asymptotically flat Lorentzian region

Let us for the moment concentrate on the special case x ∈ (−1, 1) (we shall return to more

general results soon).

From the above observations, one finds that λ1 = −L2H1(x, y)/[(x − y)2(x2 − 1)F (x)]

is obviously always positive for y ∈ (−∞,−1)∪(1,∞), while λ2 = L2H1(x, y)/[(x−y)2(y2−
1)F (y)] is positive for y ∈ (−∞, y−) ∪ (y+,−1) ∪ (1,∞) and negative for y ∈ (y−, y+).

Then, λ3 = L2(y2 − 1)F (x)/(x − y)2 is always positive for y ∈ (−∞,−1) ∪ (1,∞).

The product λ4λ5 = L2(x2 − 1)F (y)/(x − y)2 is negative for y ∈ (−∞, y−) ∪ (y+,∞)

and positive for y ∈ (y−, y+). In the latter case, it follows that both λ4 > 0 and λ5 > 0

since gtt > 0 there, so that the signature of ds2
(t,φ) is (+,+) and the overall five-dimensional

signature in this region is Lorentzian.
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Note finally that for y ∈ (−1, 1) one has both λ1λ2 < 0 and λ4λ5 < 0. Consequently,

the signature cannot be Lorentzian (nor Euclidean) there.

In summary, we have shown explicitly that for x ∈ (−1, 1) the signature is Lorentzian

for all values of the parameters σ, λ (within the range given in eq. (5.2)) for y ∈ (−∞, y−)∪
(y−, y+) ∪ (y+,−1) ∪ (1,∞), and not Lorentzian for y ∈ (−1, 1). It will become clear in

subsection A.2 that the Lorentzian region represents a spacetime that is asymptotically flat

at x, y → ±1. Recall however the presence of a conical singularity at x = +1 (cf. section 5).

A.1.2 Other Lorentzian regions and Euclidean sectors

A general study (i.e., dropping the restriction x ∈ (−1, 1)) of the signature of the line

element (5.1) is straightforward but lengthy. We sketch here basic ideas (to be combined

with the discussion of the sign of the structural functions presented above) and the main

results. It is useful to preliminarily consider the sign of the products (λ1λ2), (λ4λ5) together

with the sign of λ3 in order to rule out a number of combinations, since these three signs

must contain just one minus for the signature being Lorentzian (this is not sufficient,

though). Then, more detailed analysis shows that in the case λ1λ2 < 0 one has two

Lorentzian regions, i.e. A : x ∈ (−1, 1), y ∈ (y−, y+) and B : x ∈ (y−, y+), y ∈ (−1, 1).

When λ4λ5 < 0 one finds another region C : x ∈ (−1, 1), y ∈ (−∞, y−)∪ (y+,−1)∪ (1,∞).

Finally, in the case λ3 < 0 there is a Lorentzian sector D in the subset of the region

x ∈ (−∞, y−) ∪ (y+,−1), y ∈ (−1, 1) defined by y2 < −(1 + λx)/(σx)2. Lorentzian

signature is not possible elsewhere. To summarize, A ∪ C corresponds to the Lorentzian

region x ∈ (−1, 1), y ∈ (−∞, y−) ∪ (y−, y+) ∪ (y+,−1) ∪ (1,∞) discussed previously. This

turns out to be disjoint from the third set B ∪ D, which is non-asymptotically flat since

it does not allow x, y → −1 simultaneously (see subsection A.2) and is free from conical

singularities (with the periodicities of section 5). Lorentzian regions are depicted in figure 1.

To conclude, we just mention that there exist also Euclidean regions with signature

(−−−−−), given by x ∈ (1,∞), y ∈ (−1, 1) and by the subset of x ∈ (−∞, y−)∪(y+,−1),

y ∈ (−1, 1) defined by y2 > −(1 + λx)/(σx)2. Some of these regions are asymptotically

flat, see again figure 1.

A.2 Curvature singularity, asymptotic flatness and horizons

In the rest of this appendix we shall focus only on the asymptotically flat Lorentzian region

A ∪ C (shaded in figure 2), therefore restricting to the coordinate range

x ∈ (−1, 1), y ∈ (−∞,−1) ∪ (1,∞). (A.2)

The Kretschmann scalar K = RµνρσRµνρσ has the form

K =
(x − y)4P (x, y)

H6
1 (x, y)

, (A.3)

where P (x, y) is a polynomial of degree 8 with respect to y and contains the parameters

L, λ and σ. Since H1(x, y) > 0 in the Lorentzian domain (A.2), the denominator of K is
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1−1−∞ ∞
x

−1

1

∞

y

Figure 1: Schematic plot of regions of the (x, y) plane where the metric (5.1) has Lorentzian (dark

grey) and Euclidean (light grey) signatures. Note that an appropriate compactification using the

tangent function of y (vertical axis) and x (horizontal axis) is used, which enables us to plot their

full range. Namely the left[right] edge represents x = ∓∞ and the lower[upper] edge y = ∓∞. The

“ellipse-like” curve (defined by H1(x, y) = 0) represents a curvature singularity. For definiteness,

the picture is drawn with a parameter choice λ > 1.

nonzero there (note, however, that it can vanish in other regions, cf. figure 1). The limit

of K for y → ±∞ is

lim
y→±∞

K =
6λ2(σ2 − 2λx − 2)

σ6x6
. (A.4)

This implies that there exist curvature singularities located at (x, y) = (0,±∞).

A necessary condition for the spacelike and null infinity for an asymptotically flat

spacetime is K = 0 and these can thus be located at y = x, that is at x, y → ±1 in the

coordinate range considered here (this can be seen also from the limit of the metric (5.1)

[18]).

Note that we can identify y = −∞ with y = +∞ and regard the “upper” region

y > 1 as analytical continuation of the region y < −1. This can be seen by performing the

coordinate transformation Y = 1/y which brings the two regions together. The resulting

metric is Lorentzian for x ∈ (−1, 1), Y ∈ (−1, 1). The curvature singularity is located

at x = 0, Y = 0 and the rest of the Y = 0 line in the x ∈ (−1, 1) interval is regular.

(Analogously we can also join two Euclidean regions by identifying x = −∞ with x = ∞,

cf. figure 1).

Horizons are located at zeros of F (y), i.e. y = y± < −1 given by eq. (A.1), and they

have topology S1 × S2 [18].

A.3 Ergosurfaces

Note that gtt → −1 for both x, y → −1 and x, y → +1. Therefore, in both asymptotic

regions t corresponds to a timelike coordinate of an observer at infinity. On the other

hand, gtt > 0 in the region y− < y < y+ between the inner and outer horizon and also in

ergoregions outside the outer horizon and inside the inner horizon. These are bounded by
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ergosurfaces at gtt = 0 (i.e., H2(x, y) = 0). The solution of this equation is

x2 = x2
e
(y) = −1 + λy

σ2y2
, (A.5)

which defines a real ergosurface provided 0 < x2
e

< 1. For next purposes it is convenient to

reexpress the latter in terms of the coordinate y, which defines two disjoint branches, i.e.

an outer (ye

+) and an inner (ye

−) ergosurface

ye

±(x) =
−λ ±

√
λ2 − 4σ2x2

2σ2x2
. (A.6)

Note that ye

+ ≥ y+ and ye

− ≤ y−, with equalities holding at x = ±1, so that the outer[inner]

ergosurface coincides with the outer[inner] horizon at the poles of S2 [18]. The metric

induced on spatial sections of the ergosurfaces now reads

ds2
e

=
L2H1(x, ye)

(x − ye)2

[

(y2
e
− 1)

F (x)

H1(x, ye)
dψ2 + (1 − x2)

(

1 +
2(1 − x2)σ2y2

e

(1 − λ + σ2)H1(x, ye)

)

dφ2

+

(

4σ2x2y2
e

y2
e
− 1

1 − λ + σ2

λ2 − 4σ2x2
+

1

F (x)

)

dx2

1 − x2

]

, (A.7)

where ye generically stands for ye

±(x) according to the branch one considers. Here we have

used the simplifying identities 1 + λye = −(σxye)
2 and F (ye) = (1− x2)σ2y2

e
/(1− λ + σ2).

For further analysis one has to consider two different possibilities (see figure 2) ac-

cording to the range of the parameters λ and σ, which in general are taken to obey

2σ < λ < 1 + σ2 and σ ∈ (0, 1).

For λ > 1 (which is always true if σ ∈ (1
2 , 1)), eq. (A.5) always satisfies the constraints

0 < x2
e

< 1 in regions with y < y− or y > y+, so that the outer ergosurface extends

to any value y+ ≤ ye

+ ≤ −1 outside the outer horizon, and the inner ergosurface to any

−∞ < ye

− ≤ y− inside the inner horizon (cf. figure 2.a). Interestingly, this implies that the

outer ergosurface crosses the axis y = −1 at x = ±x0, with x0 ≡
√

λ − 1/σ. Therefore,

in addition to the asymptotically flat region, there is another region with gtt < 0 “in the

proximity” of the point x = 1, y = −1 and still outside the outer horizon. Thus observers

coming from infinity have to cross the ergosurface, go through the ergoregion and cross

again the ergosurface if they want to reach this second region with gtt < 0 (with no need to

cross the horizon). It also follows that this outer ergosurface consists of two disconnected

components described by x ∈ (−1,−x0) and x ∈ (x0, 1), respectively. By inspecting the

metric (A.7) it is easy to see that in the coordinate ranges considered here these two

components have spherical topology S3, since the orbits of ∂φ close only either at x = −1

or at x = +1 on each component, and the orbits of ∂ψ close at x = −x0 or at x = +x0

(notice that (ye

+)2−1 ∼ x2 −x2
0 when x → ±x0). On the other hand, the inner ergosurface

inside the inner horizon extends to the curvature singularity at x = 0, y → −∞, and we

will not discuss it any further here.

For λ < 1 (which is possible only if σ ∈ (0, 1
2)) the outer ergosurface is localized in

y+ ≤ ye

+ ≤ −1/λ so that it does not intersect the axis y = −1 (cf. figure 2.b). It is thus a
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Figure 2: Schematic plot of the S2-black ring. Regions of interest with Lorentzian signature are

shaded. The line y = x, where the Kretschmann scalar vanishes, is indicated. Horizons are denoted

by dashed lines and ergosurfaces by continuous curves. Figure 2.a (left) represents the case with

λ > 1 with the ergosurface “intersecting” the line y = −1. Figure 2.b (right) corresponds to the

case with λ < 1. See text for details.

connected surface of topology S1 × S2. Notice that this range of parameters includes, in

particular, the limit of small rotation σ → 0.

Both the cases considered above admit an extremal limit λ = 2σ (but for λ > 1 this is

possible only when σ ∈ (1
2 , 1)), in which the two horizons coincide and intersect both the

inner and the outer ergosurfaces at x = ±1.

So far, our discussion has been confined to the physically more interesting case y < −1.

The asymptotically flat extended region y > 1 is analogous to the r < 0 region of the

Kerr solution and similarly it has negative mass and contains closed timelike curves (since

gφφ < 0 at x = 0 for y → +∞). It does not contain any horizons or ergosurfaces.

B. Charged black ring is of type G

Here we study all possibilities compatible with eqs. (6.23) and (6.24) as given in subsec-

tion 6.3.2.

1) β = γ = 0: We solve `a`
a = 0 for α2. Then Itxyφ leads to

δ
(

δ2
(

y2 − 1
)

+ ε2
(

1 − x2
))

= 0. (B.1)

Since in our region of interest y2 − 1 > 0 and 1 − x2 > 0, the only non-trivial solution

is δ = 0. In that case, however, Ityyψ implies ε = 0. Thus case 1) does not lead to a

non-trivial solution.

2) ε = β = 0: We solve `a`
a = 0 for α2. Then Itφxy leads to δγ = 0. The case γ = 0

is a subcase of 1). For the case δ = 0, Itxyx gives γ = 0. Thus case 2) does not lead to a

non-trivial solution.
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3) ε = γ = 0: We solve `a`
a = 0 for α2. Then Itφxy leads to βδ = 0. The case β = 0

is a subcase of 1). For the case δ = 0, Ityxy implies β = 0. Thus case 3) does not lead to a

non-trivial solution.

4) ε = δ = 0: We solve `a`
a = 0 for α2. Then Itφxy leads to βδ = 0. Now Iφyxφ and

Iψyψx are two quadratic equations in β and γ of the form

f1β
2 + f2βγ + f3γ

2 = 0, (B.2)

f4β
2 + f5βγ + f6γ

2 = 0, (B.3)

where fi are specific functions (usually very complicated polynomials or rational functions

of the variables x and y and parameters e, L, and λ arising in the calculations). In our

outline we do not give the explicit form of these functions but they may be obtained using

Maple. An appropriate linear combination of these equations leads to

β(f̃1β + f̃2γ) = 0. (B.4)

Now either β = 0 or β = −γf̃2/f̃1.

For the case β = 0, Iφyxφ implies γ = 0. For the case β = −γf̃2/f̃1, Itxxy also implies

γ = 0. Thus case 4) does not lead to a non-trivial solution.

5) δ = β = 0: We solve `a`
a = 0 for α2. Then Iytyx implies εγ = 0. The case ε = 0 is a

subcase of 4). The case γ = 0 is a subcase of 1). Thus case 5) does not lead to a non-trivial

solution.

6) δ = γ = 0: We solve `a`
a = 0 for α2. Then Itxxy implies βε = 0. β = 0 is subcase

of 1), ε = 0 is subcase of 3). Thus case 5) does not lead to a non-trivial solution.

7) δ = 0, the rest is non-zero: We solve `a`
a = 0 for α2. Then Iψφψφ has the form

f7β
2 + f8βγ + f9γ

2 + f10ε
2 = 0. (B.5)

We solve the above equation for ε2. Then Iyxtψ and Iytψy lead to

f11β
2 + f12βγ + f13γ

2 = 0, (B.6)

f14β
2 + f15βγ + f16γ

2 = 0. (B.7)

An appropriate linear combination of these two equations is

γ(f17β + f18γ) = 0. (B.8)

This equation can be solved for β but then Itytψ implies γ = 0 which belongs to the case

5). Thus case 7) does not lead to a non-trivial solution.

8) ε = 0, the rest is non-zero: We solve `a`
a = 0 for α2. Then Itxxφ has the form

f19β
2 + f20βγ + f21γ

2 + f22δ
2 = 0. (B.9)

We solve this equation for δ2 and then Iφyty and Iφyxt reduce to

f23β
2 + f24βγ + f25γ

2 = 0, (B.10)

f26β
2 + f27βγ + f28γ

2 = 0, (B.11)

with an appropriate linear combination giving γ = 0. Consequently case 8) does not lead

to a non-trivial solution.
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C. Gyromagnetic ratios in arbitrary dimensions8

The results of section 3 concerning the value of the gyromagnetic ratio g can be straight-

forwardly extended to any D ≥ 4. In this case, an asymptotically flat spacetime is charac-

terized by [5]

gtt = −1 +
16π

(D − 2)ΩD−2

M

rD−3
+ O(r2−D),

gti = − 8π

ΩD−2

xk

rD−1
Jki + O(r1−D), (C.1)

gij =

(

1 +
16π

(D − 2)(D − 3)ΩD−2

M

rD−3

)

δij + O(r2−D),

(which generalizes eq. (2.1)), where ΩD−2 is the area of a unit (D− 2)-sphere. We now as-

sume that the spacetime is stationary and the corresponding Killing vector field approaches

a time translation at infinity, i.e. ξµ
(t) = δµ

t . This enables us to construct a suitable test

vector potential simply as Aµ = αδµ
t , so that A = α(gttdt + gtidxi). A general asymp-

totically flat spacetime contains b(D − 1)/2c independent angular momenta in orthogonal

planes [5]. Let (x1, x2) be one of these planes. Then we can introduce there asymptotic

polar coordinates (ξ, ψ) defined by x1 = ξ cos ψ, x2 = ξ sin ψ and compute the component

of the vector potential along the generator of asymptotic rotations (in the (x1, x2) plane)

∂ψ = x1∂2 − x2∂1, that is Aψ = α∂t · ∂ψ = α(x1gt2 − x2gt1). Using the expansion (C.1)

together with adapted coordinates such that J1k = 0 for k 6= 2 and J2k = 0 for k 6= 1 (and

Jψ ≡ −J12) one immediately finds near infinity

Aψ = α
8πJψ

ΩD−2

ξ2

rD−1
. (C.2)

Now, the Komar integral of the 1-form ξ(t) associated to the Killing vector ξµ
(t) gives

the mass of the spacetime [5]

M = − 1

16π

D − 2

D − 3

∫

SD−2
∞

∗dξ(t). (C.3)

Similarly, the electric charge is defined by [5]

Q =
1

ΩD−2

∫

SD−2
∞

∗F =
α

ΩD−2

∫

SD−2
∞

∗dξ(t), (C.4)

where we have used F = dA. From eqs. (C.3) and (C.4) one finds −16παM(D − 3) =

QΩD−2(D− 2), so that eq. (C.2) can be reexpressed only in terms of physical quantities as

Aψ = −(D − 2)
QJψ

2M

ξ2

(D − 3)rD−1
. (C.5)

With, e.g., the defition of [28] (up to a different normalization of the electric charge) one

gets the gyromagnetic ratio

gψ = D − 2. (C.6)

8Received on December 8, 2006.
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This conclusion is in agreement with the value of g found in [24] for slowly rotating Myers-

Perry black holes, and with the numerical results of [28] for black holes in odd dimensions

D ≥ 5 if the limit of small charge is taken.
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